71 research outputs found

    Visualizing and Understanding Sum-Product Networks

    Full text link
    Sum-Product Networks (SPNs) are recently introduced deep tractable probabilistic models by which several kinds of inference queries can be answered exactly and in a tractable time. Up to now, they have been largely used as black box density estimators, assessed only by comparing their likelihood scores only. In this paper we explore and exploit the inner representations learned by SPNs. We do this with a threefold aim: first we want to get a better understanding of the inner workings of SPNs; secondly, we seek additional ways to evaluate one SPN model and compare it against other probabilistic models, providing diagnostic tools to practitioners; lastly, we want to empirically evaluate how good and meaningful the extracted representations are, as in a classic Representation Learning framework. In order to do so we revise their interpretation as deep neural networks and we propose to exploit several visualization techniques on their node activations and network outputs under different types of inference queries. To investigate these models as feature extractors, we plug some SPNs, learned in a greedy unsupervised fashion on image datasets, in supervised classification learning tasks. We extract several embedding types from node activations by filtering nodes by their type, by their associated feature abstraction level and by their scope. In a thorough empirical comparison we prove them to be competitive against those generated from popular feature extractors as Restricted Boltzmann Machines. Finally, we investigate embeddings generated from random probabilistic marginal queries as means to compare other tractable probabilistic models on a common ground, extending our experiments to Mixtures of Trees.Comment: Machine Learning Journal paper (First Online), 24 page

    Automatic Bayesian Density Analysis

    Full text link
    Making sense of a dataset in an automatic and unsupervised fashion is a challenging problem in statistics and AI. Classical approaches for {exploratory data analysis} are usually not flexible enough to deal with the uncertainty inherent to real-world data: they are often restricted to fixed latent interaction models and homogeneous likelihoods; they are sensitive to missing, corrupt and anomalous data; moreover, their expressiveness generally comes at the price of intractable inference. As a result, supervision from statisticians is usually needed to find the right model for the data. However, since domain experts are not necessarily also experts in statistics, we propose Automatic Bayesian Density Analysis (ABDA) to make exploratory data analysis accessible at large. Specifically, ABDA allows for automatic and efficient missing value estimation, statistical data type and likelihood discovery, anomaly detection and dependency structure mining, on top of providing accurate density estimation. Extensive empirical evidence shows that ABDA is a suitable tool for automatic exploratory analysis of mixed continuous and discrete tabular data.Comment: In proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19

    Taming the Sigmoid Bottleneck: Provably Argmaxable Sparse Multi-Label Classification

    Full text link
    Sigmoid output layers are widely used in multi-label classification (MLC) tasks, in which multiple labels can be assigned to any input. In many practical MLC tasks, the number of possible labels is in the thousands, often exceeding the number of input features and resulting in a low-rank output layer. In multi-class classification, it is known that such a low-rank output layer is a bottleneck that can result in unargmaxable classes: classes which cannot be predicted for any input. In this paper, we show that for MLC tasks, the analogous sigmoid bottleneck results in exponentially many unargmaxable label combinations. We explain how to detect these unargmaxable outputs and demonstrate their presence in three widely used MLC datasets. We then show that they can be prevented in practice by introducing a Discrete Fourier Transform (DFT) output layer, which guarantees that all sparse label combinations with up to kk active labels are argmaxable. Our DFT layer trains faster and is more parameter efficient, matching the F1@k score of a sigmoid layer while using up to 50% fewer trainable parameters. Our code is publicly available at https://github.com/andreasgrv/sigmoid-bottleneck.Comment: Published at AAAI2

    Taming the Sigmoid Bottleneck: Provably Argmaxable Sparse Multi-Label Classification

    Get PDF
    Sigmoid output layers are widely used in multi-label classification (MLC) tasks, in which multiple labels can be assigned to any input. In many practical MLC tasks, the number of possible labels is in the thousands, often exceeding the number of input features and resulting in a low-rank output layer. In multi-class classification, it is known that such a lowrank output layer is a bottleneck that can result in unargmaxable classes: classes which cannot be predicted for any input. In this paper, we show that for MLC tasks, the analogous sigmoid bottleneck results in exponentially many unargmaxable label combinations. We explain how to detect these unargmaxable outputs and demonstrate their presence in three widely used MLC datasets. We then show that they can be prevented in practice by introducing a Discrete Fourier Transform (DFT) output layer, which guarantees that all sparse label combinations with up to k active labels are argmaxable. Our DFT layer trains faster and is more parameter efficient, matching the F1@k score of a sigmoid layer while using up to 50% fewer trainable parameters. Our code is publicly available at https://github.com/andreasgrv/sigmoid-bottleneck

    Conditional Sum-Product Networks: Imposing Structure on Deep Probabilistic Architectures

    Full text link
    Probabilistic graphical models are a central tool in AI; however, they are generally not as expressive as deep neural models, and inference is notoriously hard and slow. In contrast, deep probabilistic models such as sum-product networks (SPNs) capture joint distributions in a tractable fashion, but still lack the expressive power of intractable models based on deep neural networks. Therefore, we introduce conditional SPNs (CSPNs), conditional density estimators for multivariate and potentially hybrid domains which allow harnessing the expressive power of neural networks while still maintaining tractability guarantees. One way to implement CSPNs is to use an existing SPN structure and condition its parameters on the input, e.g., via a deep neural network. This approach, however, might misrepresent the conditional independence structure present in data. Consequently, we also develop a structure-learning approach that derives both the structure and parameters of CSPNs from data. Our experimental evidence demonstrates that CSPNs are competitive with other probabilistic models and yield superior performance on multilabel image classification compared to mean field and mixture density networks. Furthermore, they can successfully be employed as building blocks for structured probabilistic models, such as autoregressive image models.Comment: 13 pages, 6 figure

    PIXAR: Auto-Regressive Language Modeling in Pixel Space

    Full text link
    Recent work showed the possibility of building open-vocabulary large language models (LLMs) that directly operate on pixel representations. These models are implemented as autoencoders that reconstruct masked patches of rendered text. However, these pixel-based LLMs are limited to discriminative tasks (e.g., classification) and, similar to BERT, cannot be used to generate text. Therefore, they cannot be used for generative tasks such as free-form question answering. In this work, we introduce PIXAR, the first pixel-based autoregressive LLM that performs text generation. Consisting of only a decoder, PIXAR can perform free-form generative tasks while keeping the number of parameters on par with previous encoder-decoder models. Furthermore, we highlight the challenges of generating text as non-noisy images and show this is due to using a maximum likelihood objective. To overcome this problem, we propose an adversarial pretraining stage that improves the readability and accuracy of PIXAR by 8.1 on LAMBADA and 8.5 on bAbI -- making it comparable to GPT-2 on text generation tasks. This paves the way to build open-vocabulary LLMs that operate on perceptual input only and calls into question the necessity of the usual symbolic input representation, i.e., text as (sub)tokens

    Not All Neuro-Symbolic Concepts Are Created Equal: Analysis and Mitigation of Reasoning Shortcuts

    Full text link
    Neuro-Symbolic (NeSy) predictive models hold the promise of improved compliance with given constraints, systematic generalization, and interpretability, as they allow to infer labels that are consistent with some prior knowledge by reasoning over high-level concepts extracted from sub-symbolic inputs. It was recently shown that NeSy predictors are affected by reasoning shortcuts: they can attain high accuracy but by leveraging concepts with unintended semantics, thus coming short of their promised advantages. Yet, a systematic characterization of reasoning shortcuts and of potential mitigation strategies is missing. This work fills this gap by characterizing them as unintended optima of the learning objective and identifying four key conditions behind their occurrence. Based on this, we derive several natural mitigation strategies, and analyze their efficacy both theoretically and empirically. Our analysis shows reasoning shortcuts are difficult to deal with, casting doubts on the trustworthiness and interpretability of existing NeSy solutions.Comment: 37th Conference on Neural Information Processing Systems (NeurIPS 2023

    How to Turn Your Knowledge Graph Embeddings into Generative Models

    Full text link
    Some of the most successful knowledge graph embedding (KGE) models for link prediction -- CP, RESCAL, TuckER, ComplEx -- can be interpreted as energy-based models. Under this perspective they are not amenable for exact maximum-likelihood estimation (MLE), sampling and struggle to integrate logical constraints. This work re-interprets the score functions of these KGEs as circuits -- constrained computational graphs allowing efficient marginalisation. Then, we design two recipes to obtain efficient generative circuit models by either restricting their activations to be non-negative or squaring their outputs. Our interpretation comes with little or no loss of performance for link prediction, while the circuits framework unlocks exact learning by MLE, efficient sampling of new triples, and guarantee that logical constraints are satisfied by design. Furthermore, our models scale more gracefully than the original KGEs on graphs with millions of entities
    • …
    corecore